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ABSTRACT

A hot-wire device designed as a gas-loaded heat pipe has been used to study the

axial magnetic field influence on the heat transfer in a potassium vapour plasma at low

vapour pressures pK = 400 -1200 Pa, temperatures Tw of the tungsten filament in the

range of 2000 to 2800 K and magnetic field intensity B = 0.182 to 0.364 T.

As a result of the applied magnetic field B the measured thermal flux Q

decreases. The separation between the heat fluxes transferred by radiation Qr, by atoms

Qa and by electrons Qe can be accomplished analysing the decrement ∆Q. A procedure to

proceed the measured data in the presence and in the absence of the magnetic field in

order to define the different mechanisms of the heat transfer has been introduced. The

electron thermal conductivity can be obtained in the Frost approximation by means of the

well known transport phenomena theory using available electron-potassium atom cross

sections in the range of electron energies ε = 0.06 to 2 eV.

KEY WORDS: electron thermal conductivity; heat transfer; hot-wire measurements;

partially magnetized plasma; potassium vapours.
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1. INTRODUCTION

The purpose of this work is to present experimental results on the magnetic field

influence on heat transport in a partially magnetized potassium plasma. The measured

quantities are proceeded using different available momentum transfer electron -potassium

atom cross sections in the calculations.

The interest to the transport properties of the alkali metal vapours is significant

[1,2]. We have already reported results on the potassium vapour atom [3,4] and electron

thermal conductivity measured by means of a hot-wire device working as a gas loaded

heat-pipe. The advantages of this modification of the hot-wire method are doubtless

when it is applied to the alkali metals vapours. In the traditional version of the hot-wire

method the vapour pressure calculating via the measured temperature of the coldest

point in the experimental device involves a large uncertainty in the obtained thermal

conductivity and makes the results practically not reproducible. These problems are

completely precluded in the experimental device operating as a heat-pipe: by fixing the

pressure of the external inert gas (Ar) we thereby define the potassium vapours pressure.

2. MEASUREMENTS

2.1. Experimental device

The experimental device and the measurement procedure have been reported

elsewhere [3,4]. In short, the gauge was a Pyrex tube with inner diameter 2R = 10-2m. A

co-axial tungsten filament (diameter 2r = 1 ×10-4 m, length 0.18 m) was heated by a

stabilized DC current up to 2800 K and the voltage was measured with a relative error

less than 10-5. The system was working in a heat-pipe regime [4], the external gas being

argon at a given pressure pAr. At the lower part of the gauge the potassium was

evaporated. The vapours condensed in the cold part outside the device and flowed down.
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With the increasing of the glass tube heating the vapours displaced the argon gas till a

pure potassium atmosphere with the same pressure pK = pAr was obtained. In a gas

loaded heat-pipe regime the heat losses of the wire were found to be constant in a large

range of evaporation rates. The furnace containing the gauge was surrounded by a

system of coaxial Helmholtz coils producing an uniform (within 1 %) axial magnetic field

B up to 0.36 T.

2.2. Energy balance of the hot wire

Here we consider the tungsten wire temperatures Tw >1700 K when a plasma is

generated near the filament surrounded by a gas with low ionization potential such as

potassium vapours. Then the total heat flux from the filament in the hot-wire device is

Q = UI = Qr(Tw) + Qa(Ta) + Qe(Te)  (1)

where U and I are the filament heating DC voltage and current, respectively. The

radiation (Qr), atom (Qa) and electron (Qe) conductivity heat fluxes are:

Q rL T Tr w
4

R
4= −2π γ εν ( ), (2)

Q A dT
T

Ta

a a

R

= ∫ λ (3)

Q A dT
T

T

e e Ri R

R

e

= + +∫ ∗( )λ λ λ (4)

Here A = 2πL/ln(R/r) is a formfactor, TR - the cold wall temperature (~700 K); γ and εν

are the absorption coefficient and emissivity of tungsten; λa and λe - atom and electron

potassium plasma thermal conductivities. Ta and Te stand for the temperatures of atoms

and electrons near the filament, Ta = Tw - δT, δT being the temperature jump. In our

experiment ionization and excitation processes can exist and this is taken into account

considering the reactive thermal conductivities λRi and λR*.
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If an axial magnetic field is applied, some of electrons will stay longer in the

volume between the hot wire and the cold wall. Between the collisions with heavy

particles (ions and atoms) the electron moves along a trajectory determined by the

cyclotron frequency ω = eB/m. As a result, the perpendicular electron thermal

conductivity λe⊥ and the related Qe will decrease while both U and Tw will increase. So,

we receive the basic equation of the method

( )Q B Q I U
dQ

dT
T A T A T dT

T

T

R

e

( ) ( ) ,− = × = + + + −












∫0 ∆ ∆ ∆ ∆r

w
w a a e e  eB e eλ λ λ λ (5)

where ∆U is the wire voltage change caused by the magnetic field B. In our experiment

∆U/U and ∆Tw/Tw were in the range 10-3-10-2 for B = 0.36 T while the term A(λe)∆Te is

much smaller than the other terms. The change in the heat transfer due to the ionization

and excitation is negligibly small compared with the other terms.

2.3. Data processing

In the experiment we measured ∆U = UB-U at fixed pK and B for a given set of

stabilized values of I. Thus, the change of the input electrical power ∆QB = I∆U is equal

to the sum of the changes of the losses caused by the wire radiation (∆Qr), atom (∆Qa)

and electron (∆Qe) thermal conductivities

∆Qr + ∆Qa- I∆U = ∆Qe (6)

The left side of equation (6) can be considered as experimentally determined (∆Qexp =

I ∆U - (∆Qr + ∆Qa)) while the right one (∆Qcalc = ∆Qe ) can be calculated using the

known momentum transfer cross section dependency on the electron energy Qea(v). Then

y = ln(∆Qcalc/∆Qexp) will be a measure of the discrepancy between the theory and

experiments.
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In a first approximation all the three mechanisms of the heat transfer can be

considered assuming that the increases of the atom (∆Ta = TaB-Ta) and electron (∆Te =

TeB-Te) temperatures are equal to the increase of the wire temperature ∆Tw = TwB-Tw.

∆Tw (further denoted as ∆T) can be calculated

(a) from the measured V-A characteristics as

∆T = TwB(R01) - Tw(R02 ) (7)

(R01 = UB/I and R02 = U/I stand for the wire resistance measured in vacuum with and

without magnetic field) or

(b) using the approximation formula

∆T ≈ (dTw/dρ) (∆UB/U) ρ(TW), (8)

where ρ(TW) is tabulated tungsten resistivity [5]. The results of eq.(7) and eq.(8)

coincide within 1-2%.

2.3.1.The hot wire radiation power increment ∆Qr is one of the main results of the

plasma magnetizing. The accuracy of its calculations defines the reliability of the final

data. Three alternative approaches were used to calculate ∆Qr:

(a) By means of the Stephan-Boltzmann low

∆Qr = 2πγεν (TwB
4 -Tw

4), (9)

where γ and εν are tabulated for tungsten in [5].

(b) From the V-A characteristics. We compared the points R1 = UB/I and

R2 = U/I measured in a potassium plasma at I = const with the corresponding points of

the vacuum characteristics with equal R10 = U01/I01 and R2 = U02/I02. Then

∆Q U I U Ir = −01 01 02 02 (10)

 (c) Using the approximation formula

∆Qr = (dQr/dTw) ∆T ≈ (dQr/dρ)(∆UB/U)ρ(Tw) (11)
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The derivatives (dQr/dTw) and ρ(dQr/dρ) were calculated for our particular wire

using the tabulated tungsten temperature dependency of the specific power q0(Tw) and

resistivity ρ(Tw) [5].

The comparison between the calculations made by means of eq.(9) - eq.(11)

showed an acceptably good coincidence (≈2%). The choice of εν = 0.34 to 0.43 in eq.(9)

resulted in a deviation of about ±5% with respect to the mean values. Therefore further

on we used only eq.(9) as the simplest one.

2.3.2. The magnetic field dependent increment of the atom conductivity heat flux

 ∆ ∆Q A dT dT A T
T

T

T

T

R

aB

R

a

a a a a= −











≅∫ ∫λ λ λ (12)

can be calculated using our previous low temperature data on the monatomic potassium

vapours thermal conductivity [3,4]

λ λa a a( ) ( ) ( / ) .T K T= ×1100 1100 0 91  (13)

where λa(1100K)=1.62×10-2 W•m-1•K-1. The atom temperature is defined as Ta = Tw - δT.

The temperature jump δT can be calculated as δT = C QaT
1/2/pK (C is a constant for a

given geometry of the particular device). The calculated absolute values of ∆Qa are

approximately 0.1∆Qr.

2.3.3. The magnetic field dependent decrement of the electron conductivity heat

flux is a result of two contradictory effects: the increase of the electron temperature (∆Te

= ∆Tw) and the decrease of the plasma electron thermal conductivity due to the

magnetizing of the electrons (λe(B) ∠ λe(0))

∆ ∆Q A B dT dT Q A B dT
T T

e

TeB e e

e e e e e= −











≅ + −∫ ∫ ∫λ λ λ λλ( ) ( ) [ ( ) ( )]

1700 1700 1700

0 0 , (14)
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where ∆Qλe = Aλe(Te)∆T is negligibly small compared to ∆Qr (∆Qλe≈0.01∆Qr). The

calculation of the second term of Eq.(14) is based on the detailed theory of the transport

properties of the partially ionized plasma developed in [6]. The Coulomb interactions are

taken into account in the calculation of the electron-heavy particles collision frequency

following the Frost approximation [6,7]

( ) ( )ν
π

π εF N Q
T

e m m k b= −v (v) + a
8 n

vT
e
1/2

22
0

2 2
4 2 (ln )Λ , (15)

where N is the potassium atoms density, n and m - the electron density and mass, ε0 -

electrical permittivity of vacuum, k - Boltzmann constant, ln Λ is Coulomb logarithm, a

and b - constants different for the electrical conductivity σ, electron thermal conductivity

λe and thermal diffusion ϕ [7]. QT = Qea(v) + Qexc(v) is the total electron - heavy

particles interaction cross section; Qexc(v) being the inelastic interactions cross section.

The overheating of the plasma by the electric field (E = U/L) along the wire can

be found from the equation

( )( )σ ν νE
mnk
M

T Tea ei e a
2 3

= + − , (16)

where M is the potassium atomic mass, ν ea  and ν ei  are the mean electron-atom and

electron-ion collision frequencies respectively.

The calculated increments of the heat fluxes ∆Qr , ∆Qa and ∆Qλe as functions of

the wire heating current I at pK= 800 Pa and B=0.354 T are presented in Figure 1. The

corresponding relative contributions ∆Qa/∆Qr and ∆Qλe/∆Qr of the different mechanisms

in the heat transfer are shown in Table I.
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3. RESULTS AND DISCUSSION

Altogether S = 82 experimental points were measured and proceeded. The

experimental conditions were carefully fixed to meet the contradictory restrictions of the

applied theoretical consideration. The influence of pK, I, and B on the electron thermal

conductivity in the hot-wire device is illustrated in Figures 2, 3 and 4.

In the calculation of Te and ∆Qe we tried different Qea(v): the semi-empirical

cross section, derived from transport data [8] and the theoretical cross-sections of

Spencer and Phelps [9], and Fabricant [10]. As expected, the best fit was received by a

spline function minimizing only the deviations of our experiment. Unfortunately, such

approximation based on an unique experiment is not universal. In the calculations of the

transport coefficients we used the sum Qea(v)+Qexc(v), where Qexc is the total excitation

cross-section to the 4P level (1.6 eV) taken from the measurements of Chen and

Galagher [11].

To get an idea about the order of the values considered in this work we present in

Table II an example of the calculated results at B = 0.364 T and I = 1.5 A for pK = 400,

800 and 1200 Pa. All electron- atom cross-sections dependent values (λe, Te, ∆Qe,, ∆Qλe,

∆Qcalc) were calculated with the electron velocity dependence of Qea, taken from [9]. One

more justification of the choice of the experimental condition can be found in the fact

that the best agreement between the theory and our experiment was obtained at pK = 800

Pa (y = 0.087). At high pressures (pK > 1200 Pa) the appearing breakdowns create

parallel to the filament discharge channels. At low pressures (pK <400 Pa) the accepted

temperature jump approximation is not correct.

Comparing the deviations y = ln(∆Qcalc/∆Qexp) between the measured in our

experiment values and those calculated using one of the available electron-atom
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momentum transfer cross sections we tried to evaluate their applicability for prediction

transport properties of the partially magnetized potassium plasma. In his recent work

Fabricant [10] has found by a comparative analysis of alkali vapours that the theoretical

momentum transfer cross sections are more reliable compared to the semi-empirical

ones, particularly for reproducing swarm data. Our comparison between the standard

deviation rms seems to support this opinion, while the mean absolute deviation ∑y/S is

about three times less in the case of [8]. The calculation of the electron thermal

conductivity in a partially magnetized plasma is a complicated procedure. It includes

calculations of the perpendicular and Hall components of the electrical conductivity and

thermal diffusion. On the other hand, the estimated experimental error is relatively high

(in order of 30-40 %). Because of these two inauspicious reasons we believe that both

semi-empirical and theoretical cross sections could be used to interpret our experimental

results.

4. CONCLUSION

The obtained experimental information can be used in a procedure of defining the

electron-potassium atom cross section from a simultaneous fit of different type

experiments. A comparison between theoretical and semi-empirical cross sections

showed that both can be successfully used in numerical experiments and calculations.
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Table I. Relative Increments of the Heat Fluxes at B = 0.364 T and pk = 800 Pa

Filament heating

current

(A)

1.2 1.3 1.4 1.5 1.6 1.7

∆Qa/∆Qr 0.184 0.158 0.130 0.123 0.111 0.101

∆Qλe/∆Qr 0.0006 0.002 0.004 0.006 0.008 0.10
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Table II. Potassium Vapour Pressure Influence on the Heat Transfer (B=0.364 T and I= 1.5 A, Qea(v) from [9])

pK Tw Ta Te ∆T ∆Q ∆Qr, ∆Qa ∆Qexp ∆Qcalc y =

(Pa) (K) (K) (K) (K) (W) (W) (W) (W) (W) ln(∆Qcalc/∆Qexp)

1200 2300.5 2075.5 2352.0 2.72 0.048 0.151 0.020 0.123 0.080 0.185

800 2310.5 2001.6 2473.0 4.67 0.083 0.263 0.034 0.214 0.175 0.087

400 2315.0 1826.8 2679.0 8.91 0.158 0.506 0.060 0.408 0.516 -0.102
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Figure 1. Increments of the heat fluxes at constant pk and B as functions of the wire

heating current: ◊- for filament radiation heat losses; ¨ for atom thermal conductivity

heat losses and ∆- for electron thermal conductivity heat losses.
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Figure 2. Temperature dependency of the electron thermal conductivity in the absence of

magnetic field at different pK: ◊ - 400 Pa; ¨- 800 Pa and ∆-1200 Pa.
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